Chemistry A

Advanced GCE A2 H434

Mark Schemes for the Units

June 2009

F321 Atoms, Bonds and Groups

Question		Expected Answers	Marks	Additional Guidance
				mass of one mole of atoms \checkmark $1 / 12$ th \checkmark the mass of one mole / 12 g of carbon-12 \checkmark
(b)	(i)	Mg \checkmark oxidation number changes from 0 to (+)2 OR oxidation number increases by $2 \checkmark$	2	ALLOW correct oxidation numbers shown in equation 2nd mark is dependent on identification of Mg IGNORE electrons
	(ii)	Mg/solid dissolves OR Mg/solid disappears OR (Mg/solid) forms a solution \checkmark bubbles OR fizzes OR effervesces OR gas produced	2	IGNORE metal reacts IGNORE temperature change IGNORE steam produced DO NOT ALLOW carbon dioxide gas produced DO NOT ALLOW hydrogen produced without gas
(c)	(i)	$\begin{aligned} & M\left(\mathrm{MgSO}_{4}\right)=120.4 \mathrm{OR} 120\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)^{\vee} \\ & \mathrm{mol} \mathrm{MgSO}_{4}=\frac{1.51}{120.4}=0.0125 \mathrm{~mol} \checkmark \end{aligned}$	2	ALLOW 0.013 up to calculator value of 0.012541528 correctly rounded (from $M=120.4 \mathrm{~g} \mathrm{~mol}^{-1}$) ALLOW 0.013 up to calculator value of 0.012583333 correctly rounded (from $M=120 \mathrm{~g} \mathrm{~mol}^{-1}$) ALLOW ecf from incorrect M i.e. $1.51 \div M$
	(ii)	$\frac{1.57}{18.0}=0.0872(2)(\mathrm{mol})^{\checkmark}$	1	ALLOW 0.09 up to calculator value of 0.08722222
	(iii)	$x=7 \checkmark$	1	ALLOW ecf i.e. answer to (ii) \div answer to (i) ALLOW correctly calculated answer from 1 significant figure up to calculator value, ie, x does not have to be a whole number. Likely response $=6.95$
		Total	15	

Question			Expected Answers	Marks	Additional Guidance
2	(a)		regular arrangement of labelled + ions with some attempt to show electrons \checkmark scattering of labelled electrons between other species OR a statement anywhere of delocalised electrons (can be in text below) \checkmark metallic bond as (electrostatic) attraction between the electrons and the positive ions \checkmark	3	Lattice must have at least 2 rows of positive ions If a metal ion is shown (e.g. Na^{+}), it must have the correct charge ALLOW for labels: + ions, positive ions, cations If ' + ' is unlabelled in diagram, award the label for ' + ' from a statement of 'positive ions' in text below DO NOT ALLOW as label or text positive atom OR protons OR nuclei ALLOW e- OR e as label for electron DO NOT ALLOW ‘-‘ as label for electron
	(b)	(i)	$\begin{gathered} 4 \mathrm{Na}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{Na}_{2} \mathrm{O} \\ \text { OR } 2 \mathrm{Na}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{Na}_{2} \mathrm{O} \end{gathered}$	1	ALLOW correct multiples including fractions IGNORE state symbols
		(ii)	(electrostatic) attraction between oppositely charged ions \checkmark	1	

Question		Expected Answers	Marks	Additional Guidance (iii)

Question			Expected Answers	Marks	Additional Guidance
3	(a)	(i)	$\begin{aligned} & \mathrm{mol} \mathrm{HCl}=1.50 \times 10^{-2} \\ & \text { volume } \mathrm{HCl}(\mathrm{aq})=75.0 \end{aligned}$	2	ALLOW answers to 2 significant figures ALLOW ecf from wrong number of moles i.e. $\frac{\text { moles of } \mathrm{HCl} \times 1000}{0.200}$ ALLOW one mark for 37.5 (from incorrect 1:1 ratio)
		(ii)	$180 \checkmark$	1	No other acceptable answer
	(b)		$\begin{aligned} & \mathrm{CaCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\ & \text { equation } \checkmark \\ & \text { state symbols } \checkmark \end{aligned}$	2	state symbols are dependent on correct formulae of CaCO_{3}, CaO and CO_{2} DO NOT ALLOW the 'equation mark' if O_{2} is seen on both sides (but note that the 'state symbol mark' may still be accessible)
	(c)	(i)	$\mathrm{Ca}(\mathrm{OH})_{2} \checkmark$	1	IGNORE charges, even if wrong
		(ii)	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \checkmark$	1	IGNORE charges, even if wrong
			Total	7	

Question			Expected Answers	Marks	Additional Guidance
4	(a)	(i)	the energy required to remove one electron \checkmark from each atom in one mole \checkmark of gaseous atoms \checkmark	3	ALLOW 3 marks for: the energy required to remove one mole of electrons \checkmark from one mole of atoms \checkmark atoms in the gaseous state \checkmark If no definition, ALLOW one mark for the equation below, including state symbols. $\mathrm{X}(\mathrm{~g}) \rightarrow \mathrm{X}^{+}(\mathrm{g})+\mathrm{e}^{-} / \mathrm{X}(\mathrm{~g})-\mathrm{e}^{-} \rightarrow \mathrm{X}^{+}(\mathrm{g})$ ALLOW e for electron IGNORE state symbol for electron
	(b)	(i)	outer electrons closer to nucleus OR radii decreases nuclear charge increases OR protons increase electrons added to the same shell OR screening OR shielding remains the same \checkmark	3	IGNORE 'atomic number increases' IGNORE 'nucleus gets bigger' 'charge increases' is not sufficient ALLOW 'effective nuclear charge increases' OR 'shielded nuclear charge increases' ALLOW shielding is similar
		(ii)	atomic radii increase OR there are more shells \checkmark there is more shielding OR more screening \checkmark	3	ALLOW electrons in higher energy level ALLOW electrons are further from the nucleus DO NOT ALLOW more orbitals OR more sub-shells DO NOT ALLOW different shell or new shell There must be a clear comparison: e.g. 'more shielding', 'increased shielding'. i.e. DO NOT ALLOW just 'shielding'. ALLOW 'more electron repulsion from inner shells'

Question		Expected Answers	Marks	Additional Guidance
		the nuclear attraction decreases OR Increased shielding / distance outweigh the increased nuclear charge		Nuclear OR proton(s) OR nucleus spelt correctly ONCE ALLOW 'nuclear pull' IGNORE any reference to 'effective nuclear charge'
(c)	(i)	$\mathrm{O}^{+}(\mathrm{g}) \longrightarrow \mathrm{O}^{2+}(\mathrm{g})+\mathrm{e}^{-} \checkmark$	1	answer must have state symbols ALLOW e for electron ALLOW $\mathrm{O}^{+}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{O}^{2+}(\mathrm{g})$ DO NOT ALLOW $\mathrm{O}^{+}(\mathrm{g})+\mathrm{e}^{-} \longrightarrow \mathrm{O}^{2+}(\mathrm{g})+2 \mathrm{e}^{-}$ IGNORE state symbol for electron
	(ii)	the O^{+}ion, is smaller than the O atom OR the electron repulsion/shielding is smaller OR the proton : electron ratio in the $2+$ ion is greater than in the $1+$ ion \checkmark	1	ALLOW the outer electrons in an O^{+}ion are closer to the nucleus than an O atom DO NOT ALLOW 'removed from next shell down'
		Total	11	

Question			Expected Answers	Marks	Additional Guidance
5	(a)	(i)	number of protons (in the nucleus) \checkmark	1	ALLOW proton number ALLOW number of protons in an atom IGNORE reference to electrons
		(ii)	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2} 4 s^{2}$	1	ALLOW $1 s^{2}$ written twice ALLOW subscripts ALLOW $4 \mathrm{~s}^{2}$ before $3 \mathrm{~d}^{2+}$
		(iii)	$\mathrm{Mn} /$ manganese and d \checkmark	1	ALLOW D
	(b)	(i)	 Shape of water with at least one H with $\delta+$ and at least one O with $\delta-$ H -bond between H in one water molecule and a lone pair of an O in another water molecule \checkmark hydrogen bond labelled OR $\mathrm{H}_{2} \mathrm{O}$ has hydrogen bonding \checkmark	3	all marks can be awarded from a labelled diagram If HO_{2} shown then DO NOT ALLOW 1st mark Dipole could be described in words so it does not need to be part of diagram. At least one hydrogen bond must clearly hit a lone pair Lone pair interaction could be described in words so it does not need to be part of diagram. DO NOT ALLOW hydrogen bonding if described in context of intramolecular bonding, ie
		(ii)	no hydrogen bonding OR weaker intermolecular forces	1	DO NOT ALLOW 'weaker'/ 'weak' hydrogen bonding ALLOW weaker van der Waals' forces ALLOW weaker dipole-dipole interactions DO NOT ALLOW 'weak intermolecular forces' (ie comparison essential here) DO NOT ALLOW 'no intermolecular forces'

Question		Expected Answers	Marks	Additional Guidance
(c)		van der Waals' forces OR induced dipole interactions number of electrons increases Down the group, intermolecular forces / van der Waals' forces increase OR Down the group, more energy needed to break intermolecular / van der Waals' forces \checkmark	3	electron(s) must be seen and spelt correctly ONCE ALLOW number of electron shells increases ALLOW iodine has most electrons ALLOW chlorine has the least electrons For 'Down the group' ALLOW 'Increase in boiling points' or 'Molecules get bigger'
(d)	(i)	goes brown \checkmark	1	ALLOW yellow OR orange OR any shade of yellow, orange and brown, e.g. reddish-brown IGNORE precipitate
	(ii)	iodine and (potassium) chloride \checkmark $\mathrm{Cl}_{2}+2 \mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-} \checkmark$	2	DO NOT ALLOW formulae (i.e. names essential) ALLOW any correct multiple including fractions IGNORE state symbols
	(iii)	chlorine $/ \mathrm{Cl}_{2}$ is more reactive (than iodine) OR chlorine / Cl_{2} is a more powerful oxidising agent	1	ALLOW chlorine is better at electron capture OR chlorine attracts electrons more ALLOW iodine is less reactive (than chlorine) ALLOW iodide (ion) $/ I^{-}$is a stronger reducing agent DO NOT ALLOW Cl is more reactive DO NOT ALLOW explanation in terms of displacement DO NOT ALLOW chlorine is more electronegative
	(iv)	goes purple / violet / lilac / pink \checkmark	1	ALLOW pink OR any combination of purple, violet, lilac and pink
		Total	15	

Grade Thresholds

Advanced GCE (Chemistry A) (H034 H434)
June 2009 Examination Series
Unit Threshold Marks

Unit		Maximum Mark	a	b	c	d	\mathbf{e}	\mathbf{u}
F321	Raw	60	50	43	37	31	25	0
	UMS	90	72	63	54	45	36	0
F322	Raw	100	75	65	55	46	37	0
	UMS	150	120	105	90	75	60	0
F323	Raw	40	34	31	28	25	22	0
	UMS	60	48	42	36	30	24	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
H034	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{H 0 3 4}$	17.6	35.1	52.8	68.8	82.2	100.0	16327

16327 candidates aggregated this series
For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

