

GCE

Chemistry A

Advanced GCE A2 H434

Advanced Subsidiary GCE AS H034

Mark Schemes for the Units

June 2009

H034/H434/MS/R/09

F321 Atoms, Bonds and Groups

Q	uesti	ion		Expecto	ed Answers		Marks	Additional Guidance	
1	(a)	(i)	 	_			_		
				protons	neutrons	electrons	2	mark by row	
			²⁴ Mg	12	12	12			
			²⁵ Mg	12	13	12			
			²⁴ Mg line co ²⁵ Mg line co						
	(ii) $\frac{24 \times 78.60 + 25 \times 10.11 + 26 \times 11.29}{100}$ OR $18.8640 + 2.5275 + 2.9354$ OR $24.3269 \checkmark$						2	ALLOW two marks for $A_r = 24.33$ with no working out	
			$A_{\rm r} = 24.33 \text{ (to 4 sig figs)} \checkmark$					ALLOW one mark for ecf from incorrect sum provided final answer is between 24 and 26 and is to 4 significant figures, e.g. 24.3235 ★ gives ecf of 24.32 ✓	
		(iii)	OR (weighte	12 th (the mass)	ss of an atom		3	ALLOW The (weighted) mean mass OR (weighted) average mass of an atom OR average atomic mass ✓ compared with (the mass of) carbon-12 ✓ which is 12 ✓ For 1st marking point, ALLOW mean mass of the isotopes OR average mass of the isotopes Do NOT ALLOW the singular: isotope ALLOW mass of one mole of atoms ✓ compared to 1/12 th ✓ (the mass) of one mole / 12 g of carbon-12 ✓	

PMT

Quest	ion	Expected Answers	Marks	Additional Guidance
				mass of one mole of atoms ✓ 1/12th ✓ the mass of one mole / 12 g of carbon-12 ✓
(b)	(i)	Mg ✓ oxidation number changes from 0 to (+)2 OR oxidation number increases by 2 ✓	2	ALLOW correct oxidation numbers shown in equation 2nd mark is dependent on identification of Mg IGNORE electrons
	(ii)	Mg/solid dissolves OR Mg/solid disappears OR (Mg/solid) forms a solution ✓ bubbles OR fizzes OR effervesces OR gas produced ✓	2	IGNORE metal reacts IGNORE temperature change IGNORE steam produced DO NOT ALLOW carbon dioxide gas produced
(c)	(i)	$M(MgSO_4) = 120.4 \text{ OR } 120 \text{ (g mol}^{-1}) \checkmark$	2	DO NOT ALLOW hydrogen produced without gas
		mol MgSO ₄) = $\frac{1.51}{120.4}$ = 0.0125 mol \checkmark	2	ALLOW 0.013 up to calculator value of 0.012541528 correctly rounded (from $M = 120.4 \text{ g mol}^{-1}$) ALLOW 0.013 up to calculator value of 0.012583333 correctly rounded (from $M = 120 \text{ g mol}^{-1}$)
	(ii)	1.57 = 0.0872(2) (mol) ✓		ALLOW ecf from incorrect <i>M</i> i.e. 1.51 ÷ <i>M</i> ALLOW 0.09 up to calculator value of 0.08722222
	(")	18.0	1	ALLOW 0.00 up to calculator value of 0.00722222
	(iii)	x = 7 ✓	1	ALLOW ecf i.e. answer to (ii) ÷ answer to (i) ALLOW correctly calculated answer from 1 significant figure up to calculator value, ie, x does not have to be a whole number. Likely response = 6.95 ✓
		Total	15	

	Questi	ion	Expected Answers	Marks	Additional Guidance		
2	(a)			3	Lattice must have at least 2 rows of positive ions If a metal ion is shown (e.g. Na ⁺), it must have the correct charge		
			regular arrangement of labelled + ions with some attempt to show electrons ✓		ALLOW for labels: + ions, positive ions, cations If '+' is unlabelled in diagram, award the label for '+' from a statement of 'positive ions' in text below DO NOT ALLOW as label or text positive atom OR protons OR nuclei		
			scattering of labelled electrons between other species OR a statement anywhere of delocalised electrons (can be in text below) ✓		ALLOW e ⁻ OR e as label for electron DO NOT ALLOW ' 'as label for electron		
			metallic bond as (electrostatic) attraction between the electrons and the positive ions ✓				
	(b)	(i)	4 Na + O ₂ \longrightarrow 2 Na ₂ O OR 2 Na + ½ O ₂ \longrightarrow Na ₂ O ✓	1	ALLOW correct multiples including fractions IGNORE state symbols		
		(ii)	(electrostatic) attraction between oppositely charged ions✓	1			

Question	Expected Answers	Marks	Additional Guidance
(iii)	\[\begin{align*} Na \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2	For 1st mark, if 8 electrons shown around cation then 'extra' electron(s) around anion must match symbol chosen for electrons in cation Shell circles not required IGNORE inner shell electrons
	Na shown with either 8 or 0 electrons AND O shown with 8 electrons with 6 crosses and 2 dots (or vice versa) ✓ Correct charges on both ions ✓		ALLOW: 2[Na ⁺] 2[Na] ⁺ [Na ⁺] ₂ (brackets not required) DO NOT ALLOW [Na ₂] ²⁺ / [Na ₂] ⁺ / [2Na] ²⁺ DO NOT ALLOW : [Na ₂] ²⁺ [Na ₂] ⁺ [2Na] ²⁺ [Na] ₂ ⁺
(c)		5	Throughout this question, 'conducts' and 'carries charge' are treated as equivalent terms.
	sodium is a (good) conductor because it has mobile electrons OR delocalised electrons OR electrons can move ✓		DO NOT ALLOW 'free electrons' for mobile electrons
	sodium oxide does not conduct as a solid ✓ sodium oxide conducts when it is a liquid ✓		ALLOW poor conductor OR bad conductor 'Sodium oxide only conducts when liquid' is insufficient to award 'solid conductivity' mark
	ions cannot move in a solid ✓		ALLOW ions are fixed in place IGNORE electrons IGNORE charge carriers
	ions can move OR are mobile when liquid ✓		IGNORE 'delocalised ions' or 'free ions' for mobile ions Any mention of electrons moving is a CON
	Total	12	

Q	uesti	on	Expected Answers	Marks	Additional Guidance
3	(a)	(i)	mol HCl = 1.50 x 10 ⁻² ✓	2	ALLOW answers to 2 significant figures
			volume HCl(aq) = 75.0 ✓		ALLOW ecf from wrong number of moles i.e. moles of HCl x 1000 0.200 ALLOW one mark for 37.5 (from incorrect 1:1 ratio)
		(ii)	180 ✓	1	No other acceptable answer
	(b)		$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$ equation \checkmark state symbols \checkmark	2	state symbols are dependent on correct formulae of CaCO ₃ , CaO and CO ₂ DO NOT ALLOW the 'equation mark' if O ₂ is seen on both sides (but note that the 'state symbol mark' may still be accessible)
	(c)	(i)	Ca(OH)₂ ✓	1	IGNORE charges, even if wrong
		(ii)	Ca(NO ₃) ₂ ✓	1	IGNORE charges, even if wrong
			Total	7	

Q	uesti	on	Expected Answers	Marks	Additional Guidance
4	4 (a) (i)		the energy required to remove one electron ✓ from each atom in one mole ✓ of gaseous atoms ✓	3	ALLOW 3 marks for: the energy required to remove one mole of electrons \checkmark from one mole of atoms \checkmark atoms in the gaseous state \checkmark If no definition, ALLOW one mark for the equation below, including state symbols. $X(g) \rightarrow X^+(g) + e^- / X(g) - e^- \rightarrow X^+(g)$ ALLOW e for electron IGNORE state symbol for electron
	(b) (i)		outer electrons closer to nucleus OR radii decreases ✓ nuclear charge increases OR protons increase ✓ electrons added to the same shell		IGNORE 'atomic number increases' IGNORE 'nucleus gets bigger' 'charge increases' is not sufficient ALLOW 'effective nuclear charge increases' OR 'shielded nuclear charge increases'
			OR screening OR shielding remains the same ✓ atomic radii increase OR there are more shells ✓		ALLOW shielding is similar ALLOW electrons in higher energy level ALLOW electrons are further from the nucleus
	(ii)		there is more shielding OR more screening ✓		DO NOT ALLOW more orbitals OR more sub-shells DO NOT ALLOW different shell or new shell There must be a clear comparison: e.g. 'more shielding', 'increased shielding'. i.e. DO NOT ALLOW just 'shielding'. ALLOW 'more electron repulsion from inner shells'

Question	Expected Answers	Marks	Additional Guidance
	the nuclear attraction decreases OR Increased shielding / distance outweigh the increased nuclear charge ✓		Nuclear OR proton(s) OR nucleus spelt correctly ONCE ALLOW 'nuclear pull' IGNORE any reference to 'effective nuclear charge'
(c)	$O^{+}(g) \longrightarrow O^{2+}(g) + e^{-} \checkmark$	1	answer must have state symbols ALLOW e for electron ALLOW $O^+(g) - e^- \rightarrow O^{2+}(g)$ DO NOT ALLOW $O^+(g) + e^- \longrightarrow O^{2+}(g) + 2e^-$ IGNORE state symbol for electron
	the O ⁺ ion, is smaller than the O atom OR the electron repulsion/shielding is smaller OR the proton : electron ratio in the 2+ ion is greater than in the 1+ ion ✓	1	ALLOW the outer electrons in an O ⁺ ion are closer to the nucleus than an O atom DO NOT ALLOW 'removed from next shell down'
	Total	11	

C	uesti	on	Expected Answers	Marks	Additional Guidance
5	(a)	(i)	number of protons (in the nucleus) ✓	1	ALLOW proton number ALLOW number of protons in an atom IGNORE reference to electrons
		(ii)	(1s ²)2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ² ✓	1	ALLOW 1s ² written twice ALLOW subscripts ALLOW 4s ² before 3d ²⁺
		(iii)	Mn / manganese and d ✓	1	ALLOW D
	(b)	(i)	Hydrogen bond δ+ Hδ+ Shape of water with at least one H with δ+ and at least one O with δ- H-bond between H in one water molecule and a lone pair of an O in another water molecule ✓ hydrogen bond labelled OR H₂O has hydrogen bonding ✓	3	all marks can be awarded from a labelled diagram If HO ₂ shown then DO NOT ALLOW 1st mark Dipole could be described in words so it does not need to be part of diagram. At least one hydrogen bond must clearly hit a lone pair Lone pair interaction could be described in words so it does not need to be part of diagram. DO NOT ALLOW hydrogen bonding if described in context of intramolecular bonding, <i>ie</i>
		(ii)	no hydrogen bonding OR weaker intermolecular forces ✓	1	DO NOT ALLOW 'weaker'/ 'weak' hydrogen bonding ALLOW weaker van der Waals' forces ALLOW weaker dipole-dipole interactions DO NOT ALLOW 'weak intermolecular forces' (ie comparison essential here) DO NOT ALLOW 'no intermolecular forces'

Quest	ion	Expected Answers	Marks	Additional Guidance
(c)		van der Waals' forces OR induced dipole interactions ✓ number of electrons increases ✓	3	electron(s) must be seen and spelt correctly ONCE ALLOW number of electron shells increases ALLOW iodine has most electrons ALLOW chlorine has the least electrons
		Down the group, intermolecular forces / van der Waals' forces increase OR Down the group, more energy needed to break intermolecular / van der Waals' forces ✓		For 'Down the group' ALLOW 'Increase in boiling points' or 'Molecules get bigger'
(d)	(i)	goes brown ✓	1	ALLOW yellow OR orange OR any shade of yellow, orange and brown, e.g. reddish-brown IGNORE precipitate
	(ii)	iodine and (potassium) chloride ✓	2	DO NOT ALLOW formulae (i.e. names essential)
		$Cl_2 + 2l^- \longrightarrow l_2 + 2Cl^- \checkmark$		ALLOW any correct multiple including fractions IGNORE state symbols
	(iii)	chlorine / Cl₂ is more reactive (than iodine) OR chlorine / Cl₂ is a more powerful oxidising agent ✓	1	ALLOW chlorine is better at electron capture OR chlorine attracts electrons more ALLOW iodine is less reactive (than chlorine) ALLOW iodide (ion) / I ⁻ is a stronger reducing agent DO NOT ALLOW CI is more reactive
				DO NOT ALLOW explanation in terms of displacement DO NOT ALLOW chlorine is more electronegative
	(iv)	goes purple / violet / lilac / pink ✓	1	ALLOW pink OR any combination of purple, violet, lilac and pink
		Total	15	

Grade Thresholds

Advanced GCE (Chemistry A) (H034 H434) June 2009 Examination Series

Unit Threshold Marks

U	nit	Maximum Mark	а	b	С	d	е	u
F321	Raw	60	50	43	37	31	25	0
	UMS	90	72	63	54	45	36	0
F322	Raw	100	75	65	55	46	37	0
	UMS	150	120	105	90	75	60	0
F323	Raw	40	34	31	28	25	22	0
	UMS	60	48	42	36	30	24	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
H034	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
H034	17.6	35.1	52.8	68.8	82.2	100.0	16327

16327 candidates aggregated this series

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums results.html

Statistics are correct at the time of publication.